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IMPROVED ERROR BOUNDS 
FOR SCATTERED DATA INTERPOLATION 

BY RADIAL BASIS FUNCTIONS 

R. SCHABACK 

ABSTRACT. If additional smoothness requirements and boundary conditions 
are met, the well-known approximation orders of scattered data interpolants 
by radial functions can roughly be doubled. 

1. INTRODUCTION 

Convergence orders of natural cubic spline interpolation to data f(xl),... , f(xN) 
on a mesh 

oo < a = xo < x < ... < XN < XN+1= b < oo 

are usually provided in three steps [1], [9]. First, in the space 

(1.1) H2 [a,b] {f [a,b] -> R, f" E L2[a, b]} 
where the interpolant minimizes the seminorm 

b 

2 f= J "(t)2dt, 

the approximation order is h3/2 for 

h max (xj+l - xj), 

and this order is optimal on H' [a, b]. In the second step one considers 

H4 [a, b] {f: [a, b] -> RI f(4) E L2[a, b]} 

and imposes the boundary conditions 

(1.2) f(J)(a) = f(J)(b) = O, 2 < j < 3 

to get approximation order 2. (3/2) = 3. Both f(4) E L2[a, b] and the boundary 
conditions (1.2) are required to get this order. The third and final step adds the 
condition f E C4 [a, b] and proves order 4, which can be shown to be a saturation 
order, i.e. it cannot be improved by further restrictions on f. 

Radial basis function techniques can be considered as a generalization of splines 
to the multivariate case, and here the current status of known approximation or- 
ders is comparable to step 1 of the cubic spline case. The available approximation 
orders are optimal with respect to certain "native" Hilbert spaces generalizing (1.1) 
in which the interpolant minimizes the norm under all other interpolating functions. 
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This paper proceeds to Step 2 and thus doubles the approximation order. To do 
this, the cubic spline case tells us that increased smoothness and certain boundary 
conditions for f are required. Thus we first have to introduce the "native" Hilbert 
space and a suitable subspace. These two will replace H2 [a, b] and H' [a, b] and we 
shall read off the additional boundary condition from the space of all interpolants 
(note that (1.2) is the usual property of all natural cubic splines). Since we have to 
generalize two related spaces and a boundary condition, we have to work out more 
details than earlier papers. To make the presentation independent of distribution 
theory and related theories of generalized Fourier transforms, we shall restrict our- 
selves to Hilbert space techniques and the usual tools of real analysis. We hope that 
this makes access to native spaces somewhat easier. In this respect, the following 
three sections provide a new formulation of the basic facts about native spaces. 

2. NATIVE SPACES 

For natural numbers d > 1 and an > 0 let pd denote all d-variate real polyno- 
mials of order up to m, and let (Ipjd)' be the linear space of all finitely supported 
linear functionals A of the form 

M 

(2.1) A(f) Z A3f(x3) 
3=1 

defined on the linear space C(Rd) that vanish on pdI. Here, M and x1 , ... , xAI E Rd 

are allowed to vary freely, but the x3 should be distinct. 
A continuous function d?: Rd R R is conditionally positive definite of order m 

on Rd, if the bilinear form 
Ali N 

(2.2) (A, f),:= E A3 E AkO(X3 - Yk) 
3=1 k=1 

is symmetric and positive definite on (pd )1. Table 1 shows some conditionally 
positive definite functions with their minimal orders m. Any functional A E (IPd) 
of the form (2.1) generates a continuous function 

Ali 

(2.3) fA := EZA (. - x3) 
j=1 

on Rd. The map B 

B: (pd I) -> B((p)d I) Fo 

defined on (pd)'1 by B(A) = fA\ is injective, because we have 

(2.4) [t(f) =(A, [t)@ A (f1) 

for all A, tt EE (IdP)1). Note that (pd )' is independent of @, while the topology 
induced by (, )< is not. The formula (2.4) shows that (Ipd)' and ?o := B((IPd)') 
form a dual pair, and this one-to-one correspondence between functionals and 
functions is a basic feature of spaces behind radial basis functions. Furthermore, 
we remark that the functions fA\ from FO are the interpolants that occur in all 
applications. Thus the space F? arises very naturally, and we have to investigate 
the spaces of functions that can be approximated by functions from F0. This in 
turn requires knowledge of completions of Fo with respect to various topologies. 
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TABLE 1. Radial basis functions and Fourier transforms 

radial basis function 4>(x) || @(w) in Rit 

(-l) F21 
1l X I. > 0, 1 2N Tm > [,/2] 2d+V7d 

/ 2 IF ((d + -)i/2) HwKII 
d 

(_l)k+1 IIXIH2k log llxll, k E 2N m > k 2d+2k-1 d/2r (d/2 + k) k!jwj-d-2k 

e-l l 
C 

, II > O, 
2 

> 7r Vd/2 11_l112/(4Ca) 

(_1)Ev/2] (C2 + ,IXI12)vl2 ( r1)v/2] 2 
d/2K(d+i)12(cllwll) 

v > O, v 2N, c 04 O, m > [v/2] F(-v/2) 

K ||avl 8-(d+v)12 

(C2 

+ 

HIXH12)v/2 m 

> 

0 

xd(/2) -(d)/2 

(22 

-d <ii <0,i' ~ 22,c# 0 ~ (/2)K(d+v)/2(C11W1)D2 

However, there is a specific topology that comes for free from the definition of To, 
namely the topology induced by 

(2.5) (fX, f1), = (AI At)@ 

for all A, Et C (pd )1. The completion ? of To with respect to this topology 
(that is induced by 1 itself) will be called the native space for interpolation by 
translates of b. The next sections are devoted to the study of XT by Hilbert space 
and Fourier transform techniques, in order to provide the fundamentals for improved 
error bounds. At this stage, however, we can already read off (2.3), (2.4), and (2.5) 
what will later lead to the proper boundary condition in native spaces. 

Lemma 2.1. Two functions fA and f1 are orthogonal, if fA coincides with a poly- 
nomial from Pd on the support of A or f1 coincides with a polynomial from Pd on 
the support of A. 

Before we proceed any further in the investigation of native spaces, we have to 
describe the interpolation process and the form of its error bounds. 

Interpolation of data fl, . .. , fA/, on a set X ={x, ... ., xml} C Rd of M distinct 
points requires X to be pd -nondegenerate, i.e. a polynomial from Ipd which 
vanishes on X must be identically zero. Then one looks for an interpolant 

Q MI 

(2.6) SX,f = p + fA Z Pj + E ZAk(. - Xk) 
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with p E pdP, a basis P1, ,pQ of pdP, and A E (IPd)' supported on X. The 
interpolation conditions 

SX,f(xj) p(xj) + fA(xj) = fj, 1 < < M 

can be written in obvious matrix form as 

(2.7) (A D () 

with A =(4(xj - Xk))l<j,k<M, P = (Pk(Xj)) 1<j<M. The system (2.7) is uniquely 

solvable, because 4? is conditionally positive definite of order m and X is d 
- 

nondegenerate. Thus there exists a Lagrange basis ul,... , uM for the space of 
functions (2.6) related to interpolation on X, such that 

M 

SX,f = Eujf-, 

j=1 

and the functions uj solve the system 

(A P(A uj(x) - ((x-xi) 1<j<M, 
tpT oJ \Wk(X)I - Pk(X) J < k < Q, 

for all x E Rd. The interpolation error now takes a very simple form: 
M 

(2.8) f(x) - sX,f(x) = f(x) - EZu(x)f(xj)-: 6(x)f 
j=1 

with a functional 8(x) E (Ip)d This leads to the error bound 

(2.9) If(x) - SX,f()W < 816(x) d Ilf i, 

for x E R d and f E F, splitting the effect of x and f. The nonnegative function 
P(x) = Px(x) defined by 

Pk (x) = 11 8(x) 11 q = (6 (x), (X)) 

M 

(2.10) = 4?(0)-2Zuj(x)4?(x-xj) 
j=1 

M 

+ S uj(X)Ukk(X)>(XJ -Xk) 
j,k=l 

is the power function associated to interpolation on X by <-translates, and the 
error bound (2.9) now reads as 

(2.11) If(x) - SX,f(x)I < ?lf IkPx(x) 
where s and P depend on X and <. This is the usual first-stage error bound in 
the sense of the introduction. We note in passing that the function 

TF(x, y) := (6(x): (y)) 

is (in a slightly generalized sense) unconditionally positive definite on Q \ X. 
By rather complicated techniques (see [4], [5], [6], [8]) one can bound P2(x) by 

functions F(h) = Fj(h) of the density 

h =sup min IlY-Xj 11 
yCQ X3 Lx 
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TABLE 2. All entries are modulo factors that are independent of 
r and h, but possibly dependent on parameters of < 

4?(x) = (r), r =|x2 F(h) 

rt, E R>o l2N h[ 
thin-plate splines [10] 

(_1) l+,82 r8 log r, 0 E 2N hO 
thin-plate splines [10] 

72 + r2 E R \ 2N>o e h 

Multiquadrics 6 > 0 

_3r2 d er, Q > 0 e_A 
Gaussians 6 > 0 [6] 

27(k) Kk-d/2(r) (r/2)kd/2 h2k-d 

2k > d, as in [10] 
Sobolev splines 

of X in a compact domain Q, but we do not want to elaborate these facts (see 
Table 2 and [7] for full details). The final goal of our paper is to introduce a 
stronger norm 1 on a subspace 7H of the completion fF of F, and to prove 
that 

(2.12) If(X) - SX,f(X)I <? Ilf II*P(X)IIPIIL2(Q) 

for a compact domain Q C Rd and all f E 'H. This will roughly double the 
approximation orders, and it corresponds to Step 2 in the sense of Section 1. 

The proper definition of 'H must include certain "boundary conditions", and 
the connection to L2(Q) is by no means evident at this stage. These things re- 
quire a somewhat detailed analysis of native spaces and boundary conditions when 
everything is restricted to a bounded domain Q. 

3. LOCALIZATION, EXTENSION AND BOUNDARY CONDITIONS 

To be able to study boundary conditions, we introduce a subset Q C Rd which 
is supposed to contain the centers x1,... , xM of functionals of the form (2.1). We 
only assume that Q is Ipd-nondegenerate, i.e. there is no nontrivial polynomial 
in Pd that vanishes on Q. Thus Q may, for instance, be finite, countable (with 
or without finite accumulation points), a bounded open set or R d itself, and no 
further restrictions are made at this point. Then (d ) 1 is the subspace of (pd )1 

with functionals having support in Q, and the functions fA = B(A) from the space 

-FOIQ = B((Pd)Q) 

are the approximants whose limits we have to study. The completion of FO,Q with 
respect to (., .>j will then form the native space FQ. 
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Elements of Hilbert space completions are usually defined as equivalence classes 
of Cauchy sequences, and thus there is no apparent interpretation of elements f of 
the native space FQ as functions. At the same time, there is no direct meaning of 
elements of 

LQ = CIos( (pd ) 
I 

as functionals supported on Q. But the identity (2.4) will carry over to the com- 
pletions by continuity, and this makes 4Q and FQ a dual pair in the sense that 

(3.1) A(f) := (A, B-(f))> = (B(A),f>) 

is meaningful for all A E 4Q, f E FQ and the continuous extension of the isometry 
B to the respective completions. 

Theorem 3.1. Each element f from the native space FQ has an interpretation as 
a function on Q, and this interpretation is unique modulo polynomials in RAd. 

Proof. We fix a set = {6 ,... ,tQ} C Q with Q = dimIP (m 4d) that 

is pd -unisolvent, i.e. there is a Lagrange basis P1, . .pQ of IP that satisfies 

Q 

j=1 

for all p E Pd . Then for each x E Q the functional 

Q 
(3.2) 8(x) f X f (x) - Z pj (X) f ($ ) 

J=1 

is in (pd )1 and specializes (2.8) to X =. Then one can define 

(3.3) f (x) :=(B- (f ), 6 (z) ), 

for all f E fQ and x E Q, assigning function values to the abstract element f. It 
is easy to verify that this definition is consistent with (3.1) in the sense that the 
usual application of a functional ,u also yields 

At(f) = (B-1(f),At) 

for all ut E (pd )i. Any other assignment of function values to f must satisfy this 
identity, and thus the difference of two assignments is a function g with ,u(g) = 0 
for all ut E (IPd)I. Setting ,t = 8(x) here, we get that g is in PdX, proving the 
theorem. LI 

Note that (3.3) is a special assignment of function values such that f() ={0}, 
because 8(5,) = 0 for j = 1,... ,Q. Any other assignment can be generated in 
practice by additional polynomial interpolation on - 

Since (IP))Q' is a subspace of (IPd)Rd the completions 4Q and 2Rd satisfy 4Q C 

2Rd in the sense that there is an injection J: 4Q -> Rd. Then for all f E 1Q the 
element JB-lf is in 2Rd and BJB-lf is in ?Rd. Because 
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for all A E (pd ) Q, we see that assignments of function values to f and BJB-R f 
must coincide on Q up to a polynomial in pd. If we denote the interpolating 
polynomial to f on by pf, then we can define 

f pf + BJB-lf 

and see that 

fe3Q= f Q* 

This proves an extension theorem first observed by Iske [2], [3]. 

Theorem 3.2. Any element f of a native space FQ has a canonical extension f6 
to a futnction on Rd which lies in ?Fd. This furnishes an isometric imbedding of 
,FQ into FRd. D 

This extension theorem implicitly contains boundary conditions for functions 
f E FQ. In case of cubic splines and Q = [a, b] it turns out that FQ coincides 
with H2 [a, b]/IP1 with inner product (f ", 9")L2[a,b], and the canonical extensions 
of IPl -equivalence classes of functions from FQ are linear in (-oo, a] and [b, oo). 
For functions f with additional smoothness (e.g. f E H4 [a, b]) this implies the 
boundary conditions f (3)(a) = f (3)(b) = 0, j = 2, 3. 

However, the boundary conditions are by no means apparent in general. Thus we 
now express them by orthogonality relations that will be useful for other purposes, 
too. 

If To := BJB-1lQ is the embedded image of FQ in -FRd its orthogonal 
complement is given by the following result. 

Theorem 3.3. In FRd, the spaces F0 and 

FQ' = R{g e d (JA)(g) = 0 for all A E LQ} 

yield an orthogonal decomposition. 

Proof. It is straightforward to prove orthogonality. To find that FQ1 is indeed the 
full orthogonal complement of F?, let g E ?FRd be orthogonal to F.f Then 

(g, BJA) 4 = (JA)(g) = 0 for all A E LQ 

implies g E .f . L 

There are two other formulations that may be somewhat more handy. 

Corollary 3.4. The orthogonal complement of a native space FQ, when embedded 
in f'Rd, consists of all functions g on Rd that are assignments of function values to 
some element of ?FRd such that g coincides with a polynomial from Pd on Q. Li 

Corollary 3.5. A function fA of the form (2.3) is orthogonal to an element g E FQ 
if g takes values of a polynomial from Pd on the sutpport of A. L 

This generalizes Lemma 2.1 and can possibly be used for multilevel methods with 
orthogonality between levels. Another question related to orthogonality concerns 
the support of generalized functionals A E LQ. Of course, for any A E (Ipd)I we 
have 

A(u) (f,u)> 0 

for all u E ?FRd that vanish or coincide with a Ipd -polynomial on Q. This property 
extends to LQ by continuity and is a generalization of the statement "supp (A) C Q". 
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So far we have defined the native space FQ as the completion of (pd)Q1 with 
respect to (, ) >. We now turn to another equivalent space introduced by Madych 
and Nelson. 

Theorem 3.6. The space EQ D pd is isometrically isomorphic to the space gQ of 
all real-valued functions f on Q for which there is a constant Cf > 0 such that 

IA(f)I < Cf IIAIIO 

for all A E (Pd)X1. The topology on gQ is defined by the seminorm 

If lo sup IA(f)I <Cf) 
EG(pd ll) 

A A 1 
0 

which yields a norm on 9Q/IEd that agrees with the norm IID on gQ5Q/P P. 

Proof. The statements concerning the seminorm on gQ and the norm on gQ /P d 

are easy to prove. For every assignment of function values to f E TQ we have 

IA(f)I < IfII DIAIIo 

for all A E LQ, and for the fixed assignment of function values in the sense of (3.3) 
we get FQ C gQ. Furthermore, from Pd C gQ and Pd n.FQ 0 and lfIID =I 
for f E FQ satisfying (3.3) we see that 

Q D p C ?Q' FQ c gQ/]pd 

The definition of gQ implies that gQ and Q/lPd are closed. To prove that FQ is 
not a proper subspace of gQ /]Pd, we consider an element g+?Pd and the functional 

A )-* A(g) 

on (Pd)j. This is continuous and extends to LQ. By the Fischer-Riesz theorem 
on LQ there is an element ,ug E LQ such that 

A (g) = (A, Mg),, = A (B (Ig)) 

for all A E LQ. This implies that g and B(l9) E FQ coincide on Q up to a 
polynomial in Pd, and thus g + Pd = BQ(9) + Pd as equivalence classes of 
functions on Q. This proves the assertion. D 

4. FOURIER TRANSFORMS 

To get more information out of the results of the preceding section we now add 
an assumption that looks very restrictive but is satisfied in all practical cases. For 
any A, b E (Pd I) we assume that there is a representation of 

M N 

(A, ) =D E: E Ajtk (xj -Yk) 
j=l k=l 

(4.1) j=J1k==1 d(w) (~ Aiw) ) ( ehkeXiTT a)) dwi 

as a Lebesgue integral with a nonnegative function 
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that vanishes at most on a set of measure zero. For positive orders m of conditional 
positive definiteness of 1, the function $ may have a singularity at zero. This is 
cancelled by the zeros of order m at zero of the functions 

M T 

(4.3) A(w) := EZ jeiX W 
j=1 

as results from the property A E (Pd ) via Taylor expansion of the exponential. 
A 

More precisely, we assume 1 to have a singularity 

(4.4) 1(w) w 

for w near zero, and we assume m to be minimal or 130 to be maximal under the 
restriction 

(4.5) 3o < 2m 

that makes the integral well-defined near zero. Table 1 shows the functions 1 for 
various choices of b. 

As a referee correctly pointed out, the assumption (4.1) contains a subtlety, 
because it insists on $ being a classical function, thus excluding 1 from being a 
fully general L2(R d) function or a distribution. Furthermore, the existence of the 
integral implicitly assumes some hidden decay condition on 1 that is related to the 
order m of conditional positive definiteness. We could elaborate on these delicate 
points, but we want to avoid detours. 

We have adopted generalized Fourier transform notation in (4.1) and (4.3), but 
we do not require any knowledge of generalized Fourier transform theory in what 
follows. All the integrals that arise will exist classically. Rewriting (4.1) with (4.3) 
in the form 

(A, = (27r)-d j b(w)A(w)A(w)dw, 
d 

we shall assume that 

(4.6) AV EL2(Rd) for all A E (IP) 

This implies existence of the integral in (4.1). 
We now have a tool to connect native spaces with L2 spaces. In particular, 

C :AA 

maps (Pd)' isometrically into L2(Rd), if we define the L2 inner product as usual, 
but with the factor (2Xr)d. 

Theorem 4.1. Assume that (4.1)-(4.6) hold. Then the map C extends by conti- 
nuity to LRd, and it yields an isometry between IRd and all of L2(R d). 

Proof. It is evident that C is isometric, and thus C extends to LRd. But the 
density of C(LQ) in L2 (Rd) does not follow from abstract Hilbert space arguments. 
We thus need an additional analytic argument. We first prove the assertion for 
continuous 4 with 1 > 0 on Rd \ {O}. Let some function f E L2((Rd) and some 
E > 0 be given. Then there is a compactly supported C' function g E L2 (Rd) such 
that Ilf - g2 < E. This is a standard argument in Fourier analysis, obtainable by 

convolution and "chopping near infinity". Now define u: g/ 1 on R , where 
the (possible) singularity of 1 at zero does no harm. Clearly ut is continuous and 
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compactly supported, thus in L2(R d) and u is band-limited, of exponential type, 
and in L2(R d). We now invoke the multivariate sampling theorem to recover u 
exactly from its function values on a grid in Rd with spacing h, where h is sufficiently 
small and related to the support of ft. 

Thus we have 

u(x) u E (jh) SinCd ( i), E INd 

jCZZd 

where 
d 

Sincd(Xl,.. , Xd) = sinirxj 

j=1 

and 

u(w) - E3 a(jh)eihjTw, w 
d 

has the form uf= Au for the functional 

Au(v) = E v(jh)u(jh). 

We now have to make sure that Au E ?Rd. If this is done, we are finished, 
because C(Au) = g and 

lif - V(AuJj2 = Ilf - gl12 < g- 

For all p E Ipd we have to show that Au (p) = 0. By a standard argument in Fourier 
analysis this requires a zero of order at least m of ft at zero. But our assumption 
(4.6) on $ and the minimality of m in (4.5) imply that ft has a zero of order at 
least 

1 1 ~~~~~~~d - (d + 3o) > - (d + 2m - 2) = m - ? + - 2 2 21 
thus of order > m. 

We finally have to check that 

112 = T,Aafl12 = ll4D1j2 = 11gJ12 < X, 

and this concludes the proof for 1 > 0. 
Now let 4T be positive up to a set of Lebesgue measure zero. We cover the set 

of zeros by intervals Ik, where k varies over some index set K and the total area 
Ek 'Ikl is less than some given 6. Now let 18(w) > 4(w) be a strictly positive 
continuous function that differs from $ only on the Ik. Then $6 will also satisfy 
our assumptions, and we can use (4.1) in the form 

(b, A) 8 (2r)-d/2 fd ( ) ( ) ( d 
d 

as a definition of an inner product, but we do not need I?8 explicitly. 
Now we approximate a given f E L2(Rd) by some V8A up to E/2 in the L2 

norm, picking a suitable A for each 6 and E. Then 

Ilf - Af112 ?< lf - f112 + jj8( - V)112 
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and 

1l>(A- 4)12 = 6>(l - 1,$)j2 

A( 'T'6 ~~~) < A (W)12, 6/() dW 

k k A(w)'?8(w)dw 

The full integral 

f (A(w) 12,8(w)dw A =j 6 $112 
jd 

can be bounded independent of 6, because it approximates lif 1. Thus we are able 
to pick 6 small enough to guarantee 

E /; lkJ()j 46(w)dw < E/2 

yielding an overall bound If - 4112 < 6- D 

We now use Theorem 4.1 to characterize the native space ?Rd for b via L2(RId). 
Starting with an arbitrary h E L2(Rd), the function 

(4.7) fh(X) := (h, C6(x))L2 (Rd) 

is in gRd, because the equality 

Afh= (h, CA)L2(Rd) 

follows easily from (4.7) for all A E (Pd)'. We can rewrite (4.7) as 

fh(x) (2r j h(w) (w) (eixTw- Q- pj(x)e (i ) dw 

- (2,r)Xd fh(aW) (eixTw -Lpj(x)e 
i ) dw 

where we define 

fh :h @, 

which is fully consistent with the usual notation for Fourier transforms when m 0. 

Theorem 4.2. The native space FRd for a conditionally positive definite function 
of order m on R d coincides with the space of all functions f on R d that can be 
written as 

(4.8) f (x) = (2F) Ad f(uj) ixTr (exTw -)e T d 

plus polynomials from pI, and where Z is a function that satisfies 

E/XE L2 (Rd). 

The inner product on TRd can be rewritten as 

(f g), = (27r f(^ ) dw. 
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Note that (4.8) yields f((,) = 0, thus picking up the special assignment of 
function values that we already used in (3.3). Given f E ?FRd, the function f is 
uniquely defined by 

f = V(C oB-1)f. 

There also is a way to describe the action of functionals A E IRd on functions 
f E ?Rd via 

A(f) = (2r) d j(CA)(w) ( dw = (CA, CB1lf)L2(Rd) 
Rd 

X) 

where CA = V is a function in L2(R1d). 
We now introduce a Pm-nondegenerate subset Q with _ C Q C IRf, and we 

want to study YQ and LQ instead of ?Rd and LRd. This does not yield handy 
results directly, because restriction of supports does not nicely affect the Fourier 
transforms. 

In particular, the condition supp(A) C Q does not enter directly into C(A) 

VTA E L2(RId), but it trivially affects A = (A)v = (C(A)/Vj)v, where V stands 
for the inverse Fourier transform. Formally, we have 

C(A) ^ f 
= =A= . ' 

and these functions are in LO (R d) for A E (Pd)', but are not nicely controllable 
for general A E 4Q. Since we want to take inverse Fourier transforms, we have to 
add an assumption that restricts the admissible functions, and this will lead to the 
subspace 

HQ := {f E TQ Ie// EE L2(R d)} 

of TFQ. 
In most cases the space 'HQ is related to the native space of a conditionally 

positive definite function T that equals 1 * 1 or generalizes it. In cases where 
b * b is a meaningful convolution in Rd, this relation is obvious except for the 
boundary conditions. Note that 'HQ inherits the boundary conditions from .FQ (i.e. 
those defined by 1), while the native space for b * b will have somewhat different 
boundary conditions. 

Since we want to keep cubic splines as our major example, we still have to treat 
cases where 1 * 1 does not directly make sense. In fact, if 1 satisfies bounds like 

1 (w) < C0o w12-d-, w around zero, 

|b(w)| ' Co? 0wl -d ??, w around infinity, 

/0o < 2m, 

,30 > 0, 

then one can directly see that 4A E L2(RId) for all A E (Pd)', making the 
above assumptions valid for practically every case in use. If we assume 
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somewhat more, i.e., 

/3 > d/2, 2/30 + d < 2n, 

then 1ft E L2(RId) for all ,u E (Pd)'I and one can define the quadratic form 

(4.9) (27r) -d X I (w))2A(w)fA(w)dw 
d 

for all A,I - E (IPd)I One way to use (4.9) to define a (generalized) conditional 
positive definite function of order n is to introduce functionals of the form 6(x) like 
in (3.2), but using a (pd )-unisolvent set. Then 

T (x, y) :=(27r) -d X (w)92x (w) 6(y) (w) dw 
d 

is a generalized conditionally positive definite function of order n on Rd in the sense 
that (4.9) takes the form 

M N 

E E Ajtk'(xj, Yk) 

j=1 k=1 

and defines a positive definite quadratic form on (Pd)'I 
In the model case 4DO(w) = llwll2 on Rdone has / - do = / and $0 (w) - 

cIwII-d- . Then 

I2 (W) = C211w11-2d-2/3 '1?+d(W) 

up to a multiplicative constant. While 4 is conditionally positive definite of order 
m > 3/2 on Rd the function 12fl+d has order n > ? + d/2. If we take d -1 and 
3= 3, we have m = 2, 23 + d = 7, n = 4. The boundary conditions for cubics 
require functions to be linear outside Q = [a, b], while the boundary conditions 
for septics require cubics outside Q. The smoothness of functions f in the related 
native spaces is f" E L2 for cubics and f(4) E L2 for septics. But the appropriate 
space for proving approximation order h7/2 = h(2f+d)/2 of interpolants requires 
f(4) E L2, i.e. smoothness for septics, and f(3)(x) = f(2)(X) = 0 for x outside Q, 
i.e. boundary conditions for cubics. This is why we defined 'HQ as a subspace of 
FQ: it then inherits the boundary conditions from 1, but the smoothness is related 

to b * b. In this example, it contains functions f with f(4) E L2 which are linear 
outside of [a, b]. 

Given f E 'tQ, we have the two functions 

hf fe fe 

in L2(RId). Now for any v E L2((Rd) n d we get 

hf v = (27) d hfb = (27r)- -" V 

(4.10) fd 

= (27)r-d fe _ =e_V),b = ,V),b 

such that the functional 

v I-* (f,v)I = (hfIV)L2(Rd) 
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is continuous in L2(R d) n .FQ and represented by hf. Taking v E L2(R d) n0 I we 
get 

f hfv = 0, 
d 

and from this variational equation we want to conclude that hf is supported in Q. 
Note that for f = f EE FQ with A E (Pdjj we formally have 

fA =A', hf =A 

such that hf coincides up to a factor with the functional A that is indeed supported 
in Q. This makes perfect sense in the context of distributions, but it requires some 
additional analysis to carry this over to the case of f E 'HQXQ. 

Theorem 4.3. If 1 decays not faster than algebraically at infinity (i.e. if b is 
of limited smoothness), then for any f E 'HQ and any closed set Q C Rd the L2 
function (f/1)V = hf vanishes almost everywhere outside Q. 

Proof. Our assumptions imply that all C' functions v with support outside Q are 
in j1 nqL2((Rd) . Thus 

f hfv = 0 
d 

for all such functions, proving that hf vanishes almost everywhere outside Q. C 

The converse is also true. 

Theorem 4.4. If f E FRd has the property that (f/)V = hf is in L2(RId) with 
support in Q, then f E XQ. 

Proof. We need to show that f is orthogonal to ?Q. Taking any g E F0 n L2(R d) 

we can assign function values to g modulo pId) such that g IQ= {O}. Then 

,g)= C fd J hf= hfg= o 
d D Rd J( 

The rest follows from density of L2(R d) n FRd in ?Rd by chopping Fourier trans- 
forms. C 

The additional assumption on 4 excludes cases with exponential decay of the 
Fourier transform (e.g. multiquadrics and Gaussians). To include these one needs a 
sufficiently large space of test functions with even faster decay of Fourier transforms. 
But since in these cases the error bounds for interpolation are of exponential type, 
our goal of "squaring" the error bounds would not yield a significant improvement 
anyway. We thus skip over further elaboration of details for such cases. 

We conclude this section by a sketch of the functional-analytic background of 
the space 'HQ. The latter can be redefined as the subspace of functions f C EQ 
that make the functional v - (f,v), continuous on L2(RId), such that there is a 
function hf E L2(R d) with hf = 0 outside Q and 

(4.11) (fIv>) = (hfIV)L2(Rd)= (hf, I)L2(Q) = (Lf,Lv)L2(Rd) 

for all v E L2(Rd) n .FQ, where 
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Thus hf = L*Lf with the L2-adjoint L* of L, so that (4.11) can be rewritten as 

(f,v), = (L*Lf,v)L2(Rd) = (Lf,Lv)L2(Rd). 

Here the pseudodifferential operator L is associated to 1, while L*L is associated 
to $. This is another analogy with the univariate spline case, where L usually is 
a differential operator of order m and the native space consists of f with Lf E 
L2, while improved convergence holds for f with L*Lf E L2 plus homogeneous 
boundary conditions concerning the derivatives of order m to 2m - 1. 

Theorem 4.5. Under the hypotheses of Theorem 4.3 the a priori estimate 

lf 112 ? hf 1IL2(Q) lf 1L2(Q) 

holds for all f E HQ n L2(Q) 

Proof. From (4.10) and Theorem 4.3 we get 

llf l, =(hf,f)L2() = (hf, f)L2(Q) 

for all f E jRqLt2(I2d)qyRd. This extends by continuity to all f E iQnL2(Q). D 

Corollary 4.6. Under the assumptions of Theorem 4.3 and with the notation 

lif 14*' := 11 ̂  1IL2(Rd) = 11(fe/dI)VIIL2(Q) 

for f E 'HQ we have 

(4.12) |(f,v)I | < ?| f I*DIV|| VL2(Q) 

for all v E L2(Q) n .FRd and f E 'HQ. 

Proof. Same as for Theorem 4.5. D 

5. IMPROVED ERROR BOUNDS 

We now want to assemble the results of Sections 3 and 4 into a proof of the error 
bound (2.12). 

Theorem 5.1. Let : Rd -* R be a continuous conditionally positive definite 
function of order m > 0. It should have a nonnegative Fourier transform 1 on 
Rd \ {0} in the sense of Section 4, and the decay of 1(w) at infinity should not 
be faster than some llwll- for a > 0. Such a function b leads to a native space 
F = Rd of functions f on Rd which have Fourier transforms f in the sense of 
(4.8) such that f/4i E L2(R1d), the norm being 

||R||2 = (27)-d XIf (w) 
Rd 4D (W) 

For functions f E F there is the usual error bound (2.11) with Px defined by (2.10). 
Then for any compact set Q C Rd there is a subspace 'HQ of ?Rd with norm 

(5.1) lf2 = (2^r)T-d f if ( d 

such that the error bound 

(5.2) |(f - Sx,f)(X)l |< ? IfIIlD*DPx(x)IIPXIIL2(Q) 
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holds for all f EE 'HQ and x E Q, where SX,f interpolates f on a discrete Pd _ 

nondegenerate X of Q. The subspace 'HQ consists of functions f e FRd such 
that (5.1) is finite and (fl/,)V is a function in L2 whose L2-Fourier transform is 
supported in Q. 

Proof. We first use the standard pointwise error bound (2.11) in its special form 

(5.3) l(f - sx,f)(x)l < lf - Sx,f llPx(x) 

to prove f - sx,f e L2 (Q) via 

lf SX,f L2(Q) < lf SX,f 2 IPXL2(Q) 

for all f E FRd. Note that Px is continuous due to (2.10). Then we use the 
minimum-norm property of the interpolant sx,f in the form 

(5.4) (f - SX,f, SX,f)D = 0 

which also follows from Corollary 3.4, since f - sx,f takes the value zero on the 
points where the functional associated to sx,f is supported. This yields 

Ilf 
_ 

SX,f 112 = (f _ SX,f, f _ 
SX,f)(1 = (f If _ 

SX,f)(1 

< Ilf ||4*4 Ilf-Sx,f IL2(Q) < Ilf IIb*D lf-Sx,f 11D IlPX |IL2(Q) 
due to (4.12) and (5.4). Cancelling a factor lf - sx,f 11,, we get 

Ilf-SX,fll|@ <- ?jf1j *@1PX jL2(Q)) 

and the assertion follows from (5.3). D 

REFERENCES 

[1] Ahlberg, J.H., Nilson, E.N. and Walsh, J.L. The theory of splines and their applications, 
Mathematics in Science and Engineering (38), Academic Press, 1967. MR 39:684 

[2] Iske, A. Characterization of function spaces associated with conditionally positive definite 
functions, Mathematical Methods for Curves and Surfaces, (M. Daehlen, T. Lyche and 
L.L. Schumaker, eds.), Vanderbilt University Press, Nashville, TN, pp. 265-270, 1995. MR 
96f:65003 

[3] Iske, A. Reconstruction of functions from generalized Hermite-Birhoff data, Approximation 
Theory VIII, (C.K. Chui and L.L. Schumaker, eds.), World Scientific, Singapore, pp. 257-264, 
1995. CMP 98:01 

[4] Madych, W.R. and Nelson, S.A. Error bounds for multiquadric interpolation, Approximation 
Theory VI (C.K. Chui and L.L. Schumaker and J.D. Ward, eds.), Academic Press, Boston, 
pp. 413-416, 1989. MR 91j:41002 

[5] Madych, W.R. and Nelson, S.A. Multivariate interpolation and conditionally positive definite 
functions. II, Math. Comp. 54 (1990), pp. 211-230. MR 90e:91007 

[6] Madych, W.R. and Nelson, S.A. Bounds on multivariate polynomials and exponential error 
estimates for multiquadric interpolation, Journal of Approximation Theory 70 (1992), pp. 
94-114. MR 93f:41009 

[7] Schaback, R. Error estimates and condition numbers for radial basis function interpolation, 
Advances in Computational Mathematics 3 (1995), pp. 251-264. MR 96a:41004 

[8] Schaback, R. and Wu, Z. Operators on radial functions, J. of Comp. and Appl. Math. 73 
(1996), pp. 257-270. MR 97g:42002 

[9] Schumaker, L.L. Spline Functions: Basic Theory, Wiley-Interscience, 1981. MR 82j:41001 
[101 Wu, Z. and Schaback, R., Local error estimates for radial basis function interpolation of 

scattered data, IMA Journal of Numerical Analysis 13 (1993), pp. 13-27. MR 93m:65012 

INSTITUT FUR NUMERISCHE UND ANGEWANDTE MATHEMATIK, GEORG-AUGUST-UNIVERSITAT, 
LOTZESTRASSE 16-18, 37083, GOTTINGEN, GERMANY 


